COVID-KOSHA
Home
Help
(current)
!
Note: Language translations may be imperfect
A model anti-pandemic portal for scientists & public
Viral genome
Last updated: 2021 Aug 11
Total hit(s): 5
---Sort by---
Key findings ▲
Key findings ▼
Date of publishing ▲
Date of publishing ▼
Citation Count ▲
Citation Count ▼
Impact Factor ▲
Impact Factor ▼
Select item(s)
Key Findings
Comments
(You can add your comments too!)
Original Article
(hover to see details)
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2
RNA
genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure. Here, rabbit 80S ribosome colliding in another ribosome stalled by the SARS-CoV-2 pseudoknot is structurally characterized.
Interfering with the frameshifting process at the level of nascent chain interactions with the ribosomal tunnel at the level of RNA folding leads to the formation of the frameshift stimulatory pseudoknot, representing a viable strategy in the search for new drugs against SARS-CoV-2.
✍
34029205
(
Science
)
PMID
34029205
Date of Publishing
: 2021 Jun 18
Title
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) name
Bhatt PR, Scaiola A et al.
Journal
Science
Impact factor
20.57
Citation count
: 51
Date of Entry
2021 Aug 11
×
NLM format
Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A, Meurs R, Dreos R, O'Connor KM, McMillan A, Bode JW, Thiel V, Gatfield D, Atkins JF, Ban N. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021 Jun 18;372(6548):1306-1313. PMID:34029205
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2
RNA
genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure. By cryo-electron microscopy the structure of rabbit 80S ribosome in complex with eRF1 and ABCE1, stalled at the STOP codon in the mutated SARS-CoV-2 slippery site is studied.
Interfering with the frameshifting process at the level of nascent chain interactions with the ribosomal tunnel at the level of RNA folding leads to the formation of the frameshift stimulatory pseudoknot, representing a viable strategy in the search for new drugs against SARS-CoV-2.
✍
34029205
(
Science
)
PMID
34029205
Date of Publishing
: 2021 Jun 18
Title
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) name
Bhatt PR, Scaiola A et al.
Journal
Science
Impact factor
20.57
Citation count
: 51
Date of Entry
2021 Aug 11
×
NLM format
Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A, Meurs R, Dreos R, O'Connor KM, McMillan A, Bode JW, Thiel V, Gatfield D, Atkins JF, Ban N. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021 Jun 18;372(6548):1306-1313. PMID:34029205
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2
RNA
genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure was studied by cryo-electron microscopy. The rabbit 80S ribosome is stalled close to the mutated SARS-CoV-2 slippery site by a pseudoknot.
Interfering with the frameshifting process at the level of nascent chain interactions with the ribosomal tunnel at the level of RNA folding leads to the formation of the frameshift stimulatory pseudoknot, representing a viable strategy in the search for new drugs against SARS-CoV-2.
✍
34029205
(
Science
)
PMID
34029205
Date of Publishing
: 2021 Jun 18
Title
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) name
Bhatt PR, Scaiola A et al.
Journal
Science
Impact factor
20.57
Citation count
: 51
Date of Entry
2021 Aug 11
×
NLM format
Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A, Meurs R, Dreos R, O'Connor KM, McMillan A, Bode JW, Thiel V, Gatfield D, Atkins JF, Ban N. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021 Jun 18;372(6548):1306-1313. PMID:34029205
The pseudoknot at the entry to the mRNA channel is a key structural characteristic for translation of the SARS-CoV-2
RNA
genome. It specifically interacts with ribosomal proteins (Rabbit 80S ribosome) and 18S rRNA and causes ribosomal pausing prior to -1 frameshifting and the translating ribosome structure was studied by cryo-electron microscopy to a high resolution.
Interfering with the frameshifting process at the level of nascent chain interactions with the ribosomal tunnel at the level of RNA folding leads to the formation of the frameshift stimulatory pseudoknot, representing a viable strategy in the search for new drugs against SARS-CoV-2.
✍
34029205
(
Science
)
PMID
34029205
Date of Publishing
: 2021 Jun 18
Title
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome
Author(s) name
Bhatt PR, Scaiola A et al.
Journal
Science
Impact factor
20.57
Citation count
: 51
Date of Entry
2021 Aug 11
×
NLM format
Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A, Meurs R, Dreos R, O'Connor KM, McMillan A, Bode JW, Thiel V, Gatfield D, Atkins JF, Ban N. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science. 2021 Jun 18;372(6548):1306-1313. PMID:34029205
Structure of the 28-kDa (88nt) frameshift stimulation element (FSE) from the SARS-CoV-2
RNA
Genome
The model for SARS-CoV-2 frameshifting and binding sites may be targeted by next-generation ASOs and small molecules.
✍
Pre-print
(
bioRXiv
)
Title
Cryo-electron Microscopy and Exploratory Antisense Targeting of the 28-kDa Frameshift Stimulation Element from the SARS-CoV-2 RNA Genome.
Author(s) name
-
Impact factor
N/A
Date of Entry
2021 Jun 14